Taylor Peterson, MS

<u>LinkedIn</u> • 262-994-4862 • <u>taylor.peterson2399@gmail.com</u> • <u>Website</u>

Aerospace Engineering Profile

- Successfully led complex engineering projects through all phases including conceptual design, part sourcing, prototype development, iterative refinement, ground testing, and final in-flight microgravity validation for 4 suborbital flights and many parabolic flight campaigns.
- Versatile and driven aerospace engineer with a strong research foundation and specialized expertise in fluid system design and computational fluid dynamics (CFD) simulations.
- Proven ability to collaborate effectively, communicate clearly, and excel in design, troubleshooting, and utilizing advanced engineering software.
- Objective: Obtain a Fluids Design Engineer position specializing in cryogenic propellant systems, fluid dynamics, and thermal systems for space applications.

PROFESSIONAL EXPERIENCE

NASA Glenn Research Center

Aug 2024 - Present

OSTEM Aerospace Engineer Research Intern

- Setting up, running, and post-processing complex 1D and CFD simulations of propellant transfer line flow.
- Using ANSYS DesignModeler, FLUENT, CFD-Post, and MATLAB to analyze thermal behavior and phase transitions in liquid hydrogen, for thermal management for in-space cryogenic propellant transfer.
- Utilizing MATLAB to recreate boiling curves from literature, determining the best correlations for microgravity predictions.
- Investigated the performance and limitations of commercial CFD software for cryogenic chilldown processes and assisted in determining the necessity of the development of advanced boiling models for accurate predictions.

Embry-Riddle Aeronautical University

Aug 2024 - Present

Ph.D. Student, Aerospace Engineer

- Conducting a literature review of CFD simulations of cryogenic line chilldown in 1g and microgravity.
- Using Star-CCM+ to recreate CFD models in 1g and extending to microgravity for space applications.
- Integrating CFD results into FEA software to perform modal analysis, track boiling locations, and determine pipe fill levels for improved system design.

Zero-Gravity (Zero-G) Corporation

Jul 2021 - Present

Parabolic Flight Coach

- Ensuring a safe and engaging experience by guiding passengers on parabolic research and consumer flights, both in flight and on the ground.
- Assisting researchers in achieving experimental objectives in microgravity, prioritizing successful research execution.
- Assisting in pre-flight payload readiness reviews followed by installing/un-installing payloads on the aircraft.

University of Central Florida, Orlando, FL

Aug 2021 - Aug 2024

Graduate Research Assistant, Aerospace Engineer

- Led the design, development, and flight readiness of a microfluidic experiment studying osteoporosis in astronauts, which launched on Blue Origin's New Shepard (NS-23 and NS-24) in collaboration with imec.
- Conducted CFD simulations in Star-CCM+ to model the microfluidic geometries representing bone structures in normal and microgravity.
- Fabricated and tested polydimethylsiloxane devices, validating CFD to ensure experimental accuracy.
- Led and mentored undergraduate students, by teaching CFD, device fabrication, and experimental procedures.

OSTEM Aerospace Engineer Research Intern

- Designed, built and tested a payload for the ISS implementing a fuel gauging technology, Modal Propellant Gauging (MPG), launching on a SpaceX Dragon Capsule for continuous autonomous testing.
- Designed the payload in Autodesk Inventor, including astronaut interfaces and custom parts fabricated at KSC.
- Performed modal analysis in Inventor Nastran to determine frequency responses of tanks at varying fill levels.
- Assembled an engineering prototype and conducted an integrated subsystem test to ensure functionality.
- Presented progress and engineering analyses to NASA branch engineers, receiving feedback and refining payload design.

Wisconsin Space Grant Consortium/Carthage College

Feb 2018 - May 2021

Student Project Lead and Student Mechanical Lead

National Science Foundation Graduate Research Fellowship

ISS National Lab Space Leader Fellowship

- Designed, tested, and flew multiple MPG payloads on parabolic flights and Blue Origin New Shepard launches (NS-10, NS-12, and NS-17), supporting ISS and Artemis technology development.
- Designed and optimized payloads in SolidWorks and Inventor.
- Used FEA analysis to process modal data in MATLAB, improving accuracy of fuel gauging predictions.
- Led a new MPG initiative from concept to flight testing, overseeing design part sourcing, fabrication, iterative testing, and integration of a liquid transfer system for on-orbit refueling demonstrations.
- Participated in various tests and payload readiness reviews for suborbital and parabolic flights.
- Developed CFD simulations in SimFlow/Paraview, analyzing liquid equilibrium states with varying fill levels.

EDUCATION

Ph.D. Aerospace Engineering Embry-Riddle Aeronautical University	Est. Aug 2027
M.S. Aerospace Engineering University of Central Florida	Aug 2024
B.A. Physics and Minor in Mathematics Carthage College	May 2021

SKILLS & EXPERTISE

Computational Fluid Dynamics | Troubleshooting | Test Procedures | 3D Printing (Filament & Resin) | C++ | Python | MATLAB

R | HTML | Post Processing | 3D Modeling | Data Analysis

Relationship Building | Communication | Problem Solving | Leadership | Project Management | Time Management | ANSYS | Star-CCM+ | SolidWorks | Autodesk Inventor | LaTeX | Microsoft 360 | Autodesk Inventor Nastran | Fusion 360

AWARDS

Sigma Pi Sigma Inductee – Physics Honor Society 2020 Lemelson-MIT "Move it!" Student Prize Competition	
PAPERS	
Peterson, Taylor et al. "A Study of the Effects of Osteoporosis in Microgravity." (in press). AIP Physics of Fluids.	In press
Peterson, Taylor, "A Study of the Effects of Microgravity Through Porous Media in Microfluidic Devices." (2024). Graduate Thesis and Dissertation 2023-2024. 290. https://stars.library.ucf.edu/etd2023/290	Aug 2024
➤ Le Henaff, Sylvian, Peterson, Taylor et al.,"A Study of Microfluidic Device Geometries on Fluid	Feb 2022

https://doi.org/10.1115/FEDSM2022-87470.
 Peterson, Taylor, "Propellant Mass Gauging via Modal Analysis on the International Space Station."
 Proceedings of the 31st Wisconsin Space Conference, 2021, https://doi.org/10.17307/wsc.v1i1.336

Instabilities." Proceedings of the ASME Fluids Engineering Division Summer Meeting, 2022,

Peterson, Taylor et al., "Modal Propellant Gauging in Microgravity." Proceedings of the 29th Wisconsin Space Conference, 2019, https://doi.org/10.17307/wsc.v1i1.300.

Mar 2023

Jul 2022